HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads

نویسندگان

  • Kathleen Borgmann
  • Anuja Ghorpade
چکیده

As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methamphetamine enhances cell-associated feline immunodeciency virus replication in astrocytes

Human immunodeŽciency virus (HIV) infection among substance abusers is on the rise worldwide. Psychostimulants, and in particular methamphetamine (METH), have detrimental effects on the immune system as well as causing a progressive neurodegeneration, similar to HIV infection. Many Lentivirinae, including feline immunodeŽciency virus (FIV), penetrate into the central nervous system early in the...

متن کامل

HIV-1, Methamphetamine and Astrocyte Glutamate Regulation: Combined Excitotoxic Implications for Neuro-AIDS

Glutamate, the most abundant excitatory transmitter in the brain can lead to neurotoxicity when not properly regulated. Excitotoxicity is a direct result of abnormal regulation of glutamate concentrations in the synapse, and is a common neurotoxic mediator associated with neurodegenerative disorders. It is well accepted that methamphetamine (METH), a potent central nervous stimulant with high a...

متن کامل

The blood-brain barrier and methamphetamine: open sesame?

The chemical and electrical microenvironment of neurons within the central nervous system is protected and segregated from the circulation by the vascular blood-brain barrier. This barrier operates on the level of endothelial cells and includes regulatory crosstalk with neighboring pericytes, astrocytes, and neurons. Within this neurovascular unit, the endothelial cells form a formidable, highl...

متن کامل

Synergistic Cooperation between Methamphetamine and HIV-1 gsp120 through the P13K/Akt Pathway Induces IL-6 but not IL-8 Expression in Astrocytes

HIV-1 envelope protein gp120 has been extensively studied for neurotoxic effects that have been attributed to the increased expression of various proinflammatory cytokines in the CNS. Recently we have shown that methamphetamine (MA) also increases expression of proinflammatory cytokines in astrocytes. However, combined effect of gp120 and MA is not known. The present study was undertaken to det...

متن کامل

Early Activation of STAT3 Regulates Reactive Astrogliosis Induced by Diverse Forms of Neurotoxicity

Astrogliosis, a cellular response characterized by astrocytic hypertrophy and accumulation of GFAP, is a hallmark of all types of central nervous system (CNS) injuries. Potential signaling mechanisms driving the conversion of astrocytes into "reactive" phenotypes differ with respect to the injury models employed and can be complicated by factors such as disruption of the blood-brain barrier (BB...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015